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The different changes observed in the diffraction patterns of

three different crystal forms (hexagonal, trigonal and mono-

clinic) of PurE (EC 4.1.1.21), an enzyme from the purine-

biosynthesis pathway of Bacillus anthracis, upon a wide range

of changes in the relative humidity environment of the crystals

are documented. In addition, the changes in the unit-cell

parameters, volume and bulk solvent in the three different

crystal forms were systematically followed. In an attempt to

explain the elastic (P6522) and inelastic (P3121) changes in the

diffraction pattern, refined structures of the three different

crystal forms determined at 100 K are presented, with

particular emphasis on the tertiary and quaternary structural

differences, crystal packing, intermolecular and intra-

molecular interactions and solvent structure. The refined

structures show that the precipitant salts, solvent structure

(both ordered and bulk) and conformation of the C-termini all

play a role in creating a unique cement at both the

intramolecular and intermolecular contacts of the different

crystal forms. It is suggested that it is the combination of

polyethylene glycol and the structure of the ordered water

molecules (first and second layers) as well as the structure of

the bulk solvent that are the critical factors in the plasticity of

the hexagonal crystal packing as opposed to the inelastic

responses of the lower symmetry forms.
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1. Introduction

Macromolecular crystallography has shown that most proteins

incorporate water molecules as an intrinsic component of their

three-dimensional structures. The importance of the presence

of significant amounts of solvent in protein crystals was

recognized from the early days of the field, and this insight

played a critical role in its development (Bernal & Crowfoot,

1934). It was also systematically studied by Perutz in his early

attempts to solve the phase problem by studying the shrinkage

of haemoglobin crystals in different salt solutions (Perutz,

1985).

Protein crystals contain more than 30% water (Matthews,

1968; Kantardjieff & Rupp, 2003), with an interconnected

network of large channels filled with a solution in equilibrium

with the mother solution from which the crystal grew. Some of

these solvent molecules are bound to the protein and contri-

bute to stabilizing the protein fold and the crystal packing, but

others are actually part of the bulk solution. The latter can

move freely along the interconnected network of channels and

exchange with the medium surrounding the crystal (Blevins &

Tulinsky, 1985).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dz5263&bbid=BB32
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The crystallographic water molecules are typically orga-

nized into discrete networks. A distinctive feature of these

clusters is the frequent occurrence of three layers (Nakasako,

2004). Water molecules in the ‘first layer’ are defined as those

that interact directly with atoms of the protein surface through

hydrogen bonds (2.75 Å). Waters in the ‘second layer’ do not

interact directly with the protein and are approximately

3.65 Å from the protein surface (Chen et al., 2008). Moving

away from the surface, the experimental data on the influence

of water on the protein structures becomes less definite. The

number of water molecules observed in a protein crystal

structure varies primarily with the resolution of the diffraction

data, and a regression equation has been proposed by Carugo

& Bordo (1999).

Little is known in atomic detail of what happens when a

protein crystal is exposed to drier conditions or about the

reverse rehydration processes (Huxley & Kendrew, 1953;

Berthou et al., 1972; Madhusudan et al., 1993). Presumably, the

water molecules in the solvent channels migrate and even-

tually escape through vapour diffusion at the crystal surface.

The loss of these molecules probably induces lattice shrinkage

that accompanies the rearrangements and conformational

changes of the protein molecules in the crystal lattices in

which they are embedded. Similarly, the atomic details of the

rehydration process in the crystalline environment are not

known.

In recent years, the availability of devices that permit fine

control of the relative humidity (RH) of the crystals [free-

mounting systems (FMS) or humidity-control devices (HC1b);

Kiefersauer et al., 2000; Sanchez-Weatherby et al., 2009] has

made it possible to improve the resolution (in some cases

dramatically) of protein crystals whose diffraction properties

are suboptimal. The current status of these developments in

macromolecular crystallography have recently been reviewed

(Russi et al., 2011). The importance of controlling the RH

when soaking ligands into pre-grown apoenzyme crystals has

been discussed in relation to fragment-based drug-discovery

approaches (Bottcher et al., 2011).

In previous work (Abad-Zapatero et al., 2011), we reported

that humidity control of the environment of a crystal can be

used to compensate for the detrimental effect of alien (non-

mother-liquor) solutions in the crystals. We documented these

effects using three different crystal forms (hexagonal, trigonal

and monoclinic) of the enzyme PurE, a critical enzyme of the

purine-biosynthetic pathway in Bacillus anthracis. PurE has

been found to play an essential role in the growth of bacteria

in human blood (Samant et al., 2008); therefore, the structures

of enzymes from the purine-biosynthesis pathway have been

extensively studied (Zhang et al., 2008). The structure of this

enzyme from Escherichia coli was first solved at 1.5 Å reso-

lution (PDB entry 1qcz; Mathews et al., 1999), and the struc-

ture of a PurE–mononucleotide complex (PDB entry 1d7a)

and a high-resolution structure of PurE from B. anthracis at

1.8 Å resolution have also been reported (PDB entry 1xmp;

Boyle et al., 2005). Three-dimensional structures of PurE from

several important pathogens have recently been reported

(PDB entries 3rg8, 3rgg, 3oow, 3lp6, 3kuu and 3k5h; Tran-

chimand et al., 2011; Midwest Center for Structural Genomics,

unpublished work; Integrated Center for Structure and

Function Innovation/TB Structural Genomics Consortium,

unpublished work; Center for Structural Genomics of Infec-

tious Diseases, unpublished work; Thoden et al., 2010).

Structural and crystallographic details for the most relevant

PurE structures are shown in Table 1 and the amino-acid

sequences, including purification tags and overall topological

elements of the secondary structure, are presented in Fig. 1(a).
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Table 1
Crystal forms observed for PurE.

Structural and crystallographic data entries related to PurE from different species. PDB entries 4ay3, 4ay4 and 4b4k for B. anthracis correspond to this work.

Crystallization conditions

PDB
entry

Space group,
resolution (Å)

Unit-cell parameters
(Å, �) Precipitants Buffer T (K) Subunits Organism

1xmp C2, 1.8 a = 168.26, b = 76.48,
c = 102.68, � = 168.20

15% PEG 4000, 0.8 M sodium
formate

0.1 M Tris pH 7.5 291 8 Bacillus anthracis

3oow P212121, 1.75 a = 88.56, b = 96.30,
c = 128.62

0.2 M ammonium dihydrogen
phosphate, 6% MPD

0.1 M Tris pH 8.5 295 8 Francisella tularensis

1qcz I422, 1.5 a = b = 113.04, c = 49.41 24% PEG 400, 0.2 M MgCl2 0.1 M Tris pH 8.0 291 1 Escherichia coli
1u11 I422, 1.55 a = b = 99.25, c = 164.81 22% PEG 4000, 0.19 M

ammonium acetate
0.09 M citrate pH 5.5 293 2 Acetobacter aceti

1o4v I422, 1.77 a = b = 103.25, c = 65.44 2 M ammonium sulfate,
0.2 M potassium sodium
tartrate tetrahydrate

0.1 M trisodium
citrate dihydrate pH 5.6

293 1 Thermotoga maritima

3lp6 P42212, 1.7 a = b = 145.70, c = 58.38 1.7 M sodium formate 0.1 M sodium acetate pH 5.4 298 4 Mycobacterium tuberculosis
3trh P21, 2.2 a = 87.27, b = 96.29,

c = 152.72, � = 87.27
14% PEG 3350 0.2 M ammonium formate pH 7.5 295 16 Coxiella burnetii

3rg8 P21, 1.74 a = 83.47, b = 87.92,
c = 86.70, � = 83.47

15% PEG 1000, 0.1 M MgCl2 0.1 M imidazole pH 8 298 8 Treponema denticola

4ay4 P6522, 2.0 a = b = 87.00, c = 270.00 0.3 M sodium acetate,
15% PEG 4000

0.1 M Tris pH 8.5 293 4 Bacillus anthracis

4ay3 P3121, 1.76 a = b = 86.88, c = 131.37 0.75 M sodium acetate 0.1 M cacodylate pH 6.5 293 4 Bacillus anthracis
4b4k C2, 2.5 a = 87.56, b = 151.90,

c = 134.85, � = 98.33
0.3–0.4 M sodium acetate 0.1 M cacodylate pH 6.5 293 12 Bacillus anthracis



Fig. 1(b) shows a superposition of the available PurE struc-

tures most relevant to this work, highlighting the differences

among them.

Here, we document the different responses of these three

different crystal forms of PurE to changes in the RH of the

crystals. These crystal forms were characterized in a previous

publication (Abad-Zapatero et al., 2011) and have not been

reported before. The effect that the changes in the RH had

on various crystallographic parameters was systematically

studied. Although the packing arrangement of the PurE

octamers is rather similar in the three forms, the hexagonal

form responded in a flexible way to the RH changes, while the

others did not. In order to provide some rationale for these

observations, we present the refined structures of the three

different crystal forms at resolutions of 1.75, 2.0 and 2.5 Å for

the trigonal (P3121), hexagonal (P6522) and monoclinic (C2)

forms, respectively (Abad-Zapatero et al., 2011), obtained

from crystals cooled to 100 K.

We briefly compare the quaternary structure of the PurE

protein and discuss in detail the related packing in the three

different crystal forms presented here and in others published

elsewhere, with a special focus on intermolecular and intra-

molecular contacts. In addition, we document in detail the role

that the solvent and precipitant salts play in cementing the 422

oligomer and in supporting the crystal contacts so that they

allow the elastic and inelastic changes that we observe in the

quality and extent of the diffraction pattern upon alteration of

the RH of the crystal environment.

Our results with this enzyme system suggest that the factors

determining the plasticity of a crystal lattice to changes in the
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Figure 1
Structures and sequences of PurE from different organisms. (a) Sequence and secondary-structure alignment of PurE from B. anthracis (PDB entries
4b4k, 4ay4 and 4ay3; this work) with eight other homologous proteins. The software tool Sequence Annotated by Structure (SAS) from the EBI website
was used. The organisms corresponding to the PDB codes are given in Table 1.



RH are dependent on the solvent environment (both ordered

and bulk) as well as the protein molecules involved, including

the structures of the residues involved in the packing, parti-

cularly the C-termini. Whether or not these initial results can

be extended or generalized to other proteins has still not been

proven. These results add to the body of knowledge that has

recently accumulated regarding the effects that changing the

RH of the crystals can have on the quality of the diffraction

pattern of macromolecular crystals and might help in devel-

oping predictive models in the future.

2. Materials and methods

2.1. Sample preparation

2.1.1. Protein expression, purification and crystallization.

Details of the protein expression and purification have been
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Figure 1 (continued)
(b) Secondary-structure superposition of 4ay3 (red) with PDB entries 3lp6 (dark green), 1xmp (magenta), 3oow (cyan), 3rg8 (yellow), 3trh (light green),
1o4v (blue), 1u11 (orange) and 1qcz (violet). Note the distinct conformation of the N-terminus in PDB entry 1xmp, where the His-tag extension
participates in the crystal contacts, and also the long C-terminus in PDB entry 3lp6. (c) Schematic ribbon depiction of the tertiary and quaternary
structure of PurE. N, S, E and W correspond to the main geographic directions. (d) B-factor profile of the four different subunits in the asymmetric unit of
the trigonal form of PurE. The existence of two flexible subdomains at the N-terminus (Met1–Glu58) and C-terminus (Leu133–Thr161) is apparent.



reported previously (Abad-Zapatero et al., 2011). Details of

the crystallization conditions are summarized here for self-

consistency. In this study, we focused on three crystal forms:

form A (P3121; 0.1 M cacodylate pH 6.5, 0.75 M sodium

acetate, which we refer to as the ‘salt’ condition), form B

(P6522; 0.1 M Tris pH 8.5, 15% PEG 4000, 0.35 M sodium

acetate, which we refer to as the ‘PEG’ condition) and form E

(C2; 0.1 M cacodylate pH 6.5, 0.3–0.4 M sodium acetate). The

details of these crystal forms in

comparison to structures of PurE from

different species are summarized for

convenience in Table 1 with regard to

crystallographic conditions, unit-cell

parameters and unit-cell content.

2.2. Data collection and
crystallographic analysis of
different crystal forms

2.2.1. Humidity-control devices. Two

different devices were used to monitor

the effect of the RH on the different

crystal forms: trigonal, hexagonal and

monoclinic. The first was the instrument

referred to as a free-mounting system

(FMS; Kiefersauer et al., 2000). This

device achieves dehydration by using

two airstreams of 0 and 100% RH that

are mixed to achieve the desired RH. A

feedback mechanism based on dew-

point measurement is used to determine

the actual RH, which depends on the

temperature of the sample. Variations in

RH are achieved by software control of

the two independent streams. This

instrument was installed on a Rigaku

MicroMax-007 X-ray generator on an

in-house installation. The second

instrument, which is described as a

humidity-control device (HC1b), is

based on the nozzle of a standard

cryostream (Sanchez-Weatherby et al.,

2009) and was located at the ESRF.

The instrument was transportable

and the various experiments were

performed on various beamlines at

the ESRF: BM14, ID14-1 and ID14-2

(Abad-Zapatero et al., 2011).

2.2.2. Stepwise humidity-control
experiments. The initial observations

of the elastic response of the hexagonal

form were performed using the

FMS system. The protocol for these

experiments was as follows. Changes in

the RH of the crystal were specified

using the FMS instrument software

and the crystal was allowed to

equilibrate for approximately 2 min. After equilibration,

diffraction images were collected at the indicated RH points

using the following experimental conditions: 5 min exposure

time and a crystal-to-detector distance of 250 mm at room

temperature (T = 293 K) using the in-house installation

described above. In these early experiments, only one

diffraction image was collected at each RH point (Figs. 2a

and 2b).
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Figure 2
Effect on the diffraction pattern of changes in the RH of the crystals of PurE: (a) P6522, (b) P3121.
Sequential diffraction patterns upon changes in the RH as indicated in the lower right panel for
each experiment. Arrows indicate the sequence of the RH changes. The experiments were
conducted with the FMS installed in the in-house rotating anode as described in x2.2.2. The collage
is made up of images directly obtained from the FMS, in which the right-hand side portion of the
detector is partly shaded by the mechanical jacket containing the airflow hoses (Kiefersauer et al.,
2000). (c) Distortion of the PurE diffraction pattern upon changes in the RH. The diffraction
pattern of the P3121 form (left, 90% RH) changes upon raising the RH to 95% (right) and the
appearance of the longer (264 Å) spacing is apparent, indicating the transition from the trigonal to a
hexagonal lattice in which the a and b axes are conserved and the c axis approximately doubles. It
was impossible to determine any systematic absences to establish the presence of screw-axis
symmetry. The numbers below refer to the labelling of the different ‘lunes’ of the diffraction
patterns relative to the origin of the reciprocal lattice. Inset: close up of the indicated white
rectangles in (c). This experiment was performed on ESRF beamline ID14-2.



A more detailed characterization of

the response of the different crystal

forms to changes in the RH was

performed at the ESRF using the HC1b

unit. The RH protocols for these

experiments were similar to those

described for the FMS, except for the

specific control of the RH in each

instrument (Greenspan, 1977). Diffrac-

tion images for the hexagonal form

(P6522) were collected on BM14

(� = 0.97625 Å) with an exposure time

of 0.5 s. The initial experiments were

focused on establishing the optimal RH

for the hexagonal form as a control and

as a consistency check between the RH

values of the FMS and HC1b instru-

ments. Within the experimental limits of

the two instruments, the RH for optimal

diffraction of the hexagonal form was

�85% using both instruments and the

changes observed in the diffraction

pattern upon varying the RH were

comparable, with no appreciable differ-

ence that could be interpreted as

radiation damage.

For the detailed study of the cell

changes and the amount of ordered

solvent in the different hydration stages

of the hexagonal form at different RH

values, the experiment was performed

collecting two frames (90� apart) for

each humidity step. The experiment

began at a humidity of 95% RH (rela-

tive to the instrument) and it was

decreased in 5% steps until it reached

70% (Fig. 3). For a comparable study,

diffraction images for the monoclinic

and trigonal forms (C2 and P3121) were

collected on beamline ID14-1 (ESRF)

using the HCb1 instrument. Two frames

of data (1�) for each humidity value

were collected separated by 90�.

Attempts were made to collect full data

sets at high resolution at distinct RH

values at room temperature for all three

forms, but these were unsuccessful

owing to severe radiation damage.

2.2.3. Synchrotron data collection.

Full data sets were collected under

cryogenic conditions (T = 100 K) for the

three different forms at their optimal

RH, as described previously (Abad-

Zapatero et al., 2011), using 1� oscilla-

tion and exposure times ranging from

0.1 to 0.5 s over a maximum of 120�. Full

data sets were collected for the trigonal,
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Figure 2 (continued)



hexagonal and monoclinic forms at high resolution on beam-

lines ID14-1 (� = 0.9334 Å), ID14-2 (� = 0.9330 Å) and ID14-1

(� = 0.9334 Å), respectively. Further details are given in the

previous publication and in the PDB depositions (see Table 1).

2.2.4. Data indexing and processing. Indexing and char-

acterization of the different crystal forms upon changes in the

RH was performed using the interactive iMOSFLM package

(Battye et al., 2011) and HKL-2000 (Otwinowski & Minor,

1997), and these packages were also used to process the

complete high-resolution data sets for the three crystal forms.

Indexing of the transition from the trigonal form to the

hexagonal form was performed with two 1� frames (90� apart)

using the iMOSFLM package (Fig. 2c).

2.2.5. Protein structure refinement. The structures of PurE

in the high-symmetry forms (trigonal and hexagonal) were

solved using the coordinates of B. anthracis PurE as a search

model (PDB entry 1xmp) and were partially refined as

described in the previous paper (Abad-Zapatero et al., 2011).

Further refinement took place with special attention to the

crystal contacts, the conformation of the N- and C-termini and

the solvent structure (see below) for all of the chains in the

different crystal forms. The final statistics for the refinement of

these two crystal forms are summarized in Table 2.

In brief, the refined structure of the hexagonal form

contained 4704 protein atoms, 352 water molecules and five

well defined acetate molecules, with final refinement statistics

of Rwork = 0.15 and Rfree = 0.18. The ordered residues in chains

A, B, C and D were Lys2–Gly157, Lys2–Leu160, Lys2–Gly157

and Met1–Val161, respectively. The refined trigonal form

consisted of 4755 protein atoms, 497 water molecules and

three well defined acetate molecules, with final refinement

statistics of Rwork = 0.15 and Rfree = 0.18. The ordered residues

in chains A, B, C and D were Lys2–Val161, Lys2–Val161,

Met1–Ser158 and Lys2–Gly157, respectively.

The monoclinic C2 crystal form (form E) was solved using a

similar strategy and a definitive solution was found with three

independent tetramers in the asymmetric unit. This structure

was also partially refined, and details can be found in the

previous publication (Abad-Zapatero et al., 2011). The 12

chains in the asymmetric unit (three tetramers) correspond to

a full octamer in a general position and a tetramer at a crys-

tallographic twofold. The final refinement statistics for this

form were Rwork = 0.18 and Rfree = 0.21. The model consisted

of 13 945 protein atoms and 483 water molecules (Table 2).

The number of independent chains (corresponding to one

tetramer and a full octamer) was 12 (chains A–L), and the

ordered residues were Lys2–Gly157 (chain A), Lys2–Gly157

(chain B), Lys2–Val161 (chain C), Lys2–Gly157 (chain D),

Lys2–Val161 (chain E), Lys2–Gly157 (chain F), Lys2–Val161

(chain G), Lys2–Glu156 (chain H), Lys2–Gly157 (chain I),

Lys2–Glu156 (chain J), Lys2–Gly157 (chain K) and Lys2–

Gly157 (chain L). Chains E–L form the first octamer and

chains A–D form the additional tetramer.

2.2.6. Solvent-structure refinement and analysis. During

the final stages of refinement of the three forms, water

molecules were automatically assigned using Coot (Emsley &

Cowtan, 2004) and were visually checked for positive density

in both 2Fo � Fc (1�) and Fo � Fc (2�) maps from REFMAC5

(Murshudov et al., 2011) refinement. Water molecules with

consistent hydrogen bonding were kept.

An analysis of the solvent structures associated with each

specific asymmetric unit and of the interstitial surface waters

(ISWs) was performed with the Water Polygon Finder (Lee &

Kim, 2009) and the results obtained for these crystal forms of

PurE were compared with some of the results obtained by

these authors for an extensive set of protein structures refined

at high resolution and deposited in the PDB. Water polygons

were modelled within the volume enclosed from 0.2 to 1.2 in

fractional cell coordinates for all three axes. The PurE crystal

forms studied in this work were P6522, P3121 and C2. It should

be noted, however, that in their initial analysis Lee and Kim

did not make any distinction between different crystallization

media, in particular the presence or absence of PEG, certain

organic precipitants or different salts (high and low concen-

trations).

The bulk-solvent contents and unit-cell volumes for each

crystal form at different RH stages were calculated from the

corresponding unit-cell parameters using the Matthews Prob-

ability Calculator (Kantardjieff & Rupp, 2003). The number of

waters in the bulk solvent was obtained by dividing the total

solvent volume by 10.9 Å3, which corresponds to the volume

of a water molecule (1.375 Å radius). Finally, the number of

waters divided by the number of ordered residues in the

asymmetric unit for the corresponding chains was plotted. All

of these data are summarized in Fig. 3(a).

2.3. Structure analysis and comparisons

The comparison of the fully refined structures of the three

crystallographic forms of PurE was performed using the

LSQKAB routine (for least-squares fitting) from the CCP4

package (Winn et al., 2011) and the LSQMAN routine (for

r.m.s.d. calculations) from the Uppsala Software Factory

(Kleywegt, 1996) as the core of several Unix scripts. The
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Table 2
Refinement statistics for the three crystal forms of PurE.

Refinement statistics for the three different crystallographic forms, P3121,
P6522 and C2, with details of the solvent: the number of acetate and water
atoms. Details of the data-collection statistics for the three crystal forms can be
found in Abad-Zapatero et al. (2011). Values in parentheses are for the last
resolution shell.

PDB entry 4ay3 4ay4 4b4k

Resolution range (Å) 49.5–1.76
(1.80–1.76)

43.9–2.0
(2.07–2.00)

47.1–2.5
(2.65–2.50)

Space group P3121 P6522 C2
Rwork 0.15 (0.17) 0.15 (0.16) 0.18 (0.22)
Rfree 0.18 (0.23) 0.18 (0.18) 0.21 (0.26)
R.m.s.d. bond lengths (Å) 0.011 0.012 0.008
R.m.s.d. bond angles (�) 1.40 1.41 1.31
No. of protein atoms 4755 4704 13945
No. of solvent atoms 497 352 483
No. of ligand atoms 12 20 0
Protein mean B factor (Å2) 20.6 26.2 45.3
Water mean B factor (Å2) 36.0 33.1 37.7
Solvent content† (%) 37.8 39.6 39.8

† Estimated using the Matthews coefficient (Matthews, 1968).



superposition was also performed against the two octameric

particles present in the C2 crystal form: one with all subunits

unconstrained and the other formed by a crystallographic

dyad running through the vertex direction (upper right to

lower left or NE–SW; Fig. 1c). Moreover, the emphasis of the

structural comparisons was placed at the level of tertiary and

quaternary changes with respect to the previously published

structure of B. anthracis PurE at 1.8 Å resolution (PDB entry

1xmp; Table 1). The least-squares superposition and the final

r.m.s.d. calculation were performed for the residues between

the beginning of the ordered chain (Lys2) and Leu160. A full

comparison of the tertiary structures was performed among

the different crystal forms and for the different subunits in the

asymmetric unit.

3. Results

In the sections that follow, we first present the changes in the

diffraction patterns observed for three crystal forms of PurE

(hexagonal, trigonal and monoclinic) caused by systematic

variation in the RH of their environment. We also examine the

changes observed in the three different crystal lattices upon

systematic changes in the RH. Subsequently, we discuss the

results of a detailed analysis of the refined structures of the

three crystal forms obtained at cryogenic temperatures under

conditions of optimal diffraction, seeking to understand the

factors that could explain the differing behaviour of the

hexagonal and trigonal forms. The detailed structural analysis

includes comparison of the monomeric and oligomeric PurE

structures, their packing arrangements, solvent structure (bulk

and ordered) and distribution of crystal contacts.

3.1. Diffraction-pattern changes

3.1.1. Elastic diffraction-pattern changes (P6522). One of

the most striking observations of the work with this form was

the resilience of the crystal lattice to alterations in the RH of

the medium surrounding the crystals. Initial studies had shown

that the hexagonal form had optimal diffraction at �85% RH

in the FMS in-house installation (Abad-Zapatero et al., 2011).

During this work, we observed that the quality and extent of

the diffraction pattern was reasonably reproducible even upon

large changes in the RH. Fig. 2(a) (inset) depicts a typical

sequence of elastic changes in the diffraction pattern of this

crystal form following sequential changes in the RH beginning

at the optimum value of 85%, ramping up to 95% RH (in steps

of 5%), overshooting the initial RH to reach a lowest RH

of 70% and returning in one step to the initial RH (85%).

Fig. 2(a) illustrates how the corresponding diffraction patterns

decreased in quality (sharpness) and extent (lower resolution)

when the humidity reached 95%, but that the quality was

restored at the initial RH even after reaching a lowest RH of

70%, at which the crystals only diffracted to approximately

5 Å resolution.

The changes in the unit-cell parameters are shown in

Fig. 3(b) (maximum of <3% in the c axis) and the lattices could

be considered to be isomorphous. Indeed, although not fully

appreciable in the images, the P65 systematic extinctions

appeared to be conserved, suggesting that the space group did

not change during the entire process. Similar behaviour was

observed on the synchrotron beamlines using the HC1b

instrument with different crystals. It is this remarkable elas-

ticity of the crystal lattice properties that we would like to

explain by analyzing the refined structure of the hydrated

PurE protein found in this crystal form.

3.1.2. Inelastic diffraction-pattern changes (P3121). In

contrast, changes in the RH of the crystals of the P3121 form

produced dramatic changes in the diffraction pattern in that

they (i) were not elastic and (ii) resulted in a duplication of the

c-axis spacing, making it more similar to a hexagonal form.

The overall effect on the diffraction quality of sequential

changes in RH from 97% to 88, 85, 80, 75% and a minimum of

70% can be observed in the sequence presented in Fig. 2(b)

(inset). A dramatic increase in the quality of the diffraction

pattern arose from the initial change from 97 to 88% RH, but

the changes from here to 85% RH and beyond were char-

acterized more by the appearance of additional reflections in

what appeared to be a major disruption of the lattice (Fig. 2b).

Exploration with a finer control of the RH of the environment

and looking at specific regions of the reciprocal lattice, we

found a duplication of the periodicity along the c axis of the

trigonal form (Fig. 2c). This transition was most clearly

observed within a narrow RH range of 5% using the HC1b

device and was best characterized on the synchrotron beam-

lines. Although changes were observed using the in-house

installation (Fig. 2b), it was impossible to characterize the

transition as distinctly as was performed in the experiment

depicted in Fig. 2(c). Other experiments designed to emulate

the behaviour observed in the hexagonal form (cyclic changes

in RH: 95–90–85–90–95%) using the trigonal crystal resulted

in inelastic diffraction-pattern changes (data not shown).

Unfortunately, we have not yet been able to confirm unam-

biguously whether the new crystal lattice has fully converted

to the hexagonal P6522 form described above or whether it

belongs to a different space group in the hexagonal class.

3.2. Crystallographic unit-cell changes

The striking differences observed in the behaviour of the

hexagonal and trigonal lattices upon changes in the RH of

the crystal environment prompted us to perform a more

systematic study of the changes in the three different lattices.

A series of experiments were planned and performed at

synchrotron beamlines as indicated. The results are summar-

ized in Fig. 3.

Figs. 3(b), 3(c) and 3(d) show the changes in the unit-cell

parameters of the three crystal forms (hexagonal, trigonal and

monoclinic, respectively) upon gradual changes in the RH.

The corresponding least-squares regressions for the three

forms are also presented. Fig. 3(b) show how the a and c axes

of the hexagonal unit cell change concurrently, suggesting that

the expansion of the cell is isotropic. Although predominantly

linear in the higher RH ranges, the observations have been

modelled as parabolas to suggest a different rate of cell
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expansion at lower RH values; the two parabolas are essen-

tially parallel. Fig. 3(c) shows an analogous plot for the

trigonal form, also with a quadratic regression fit for the

observations. The coefficients of the regression analysis (not

shown) for the rates of expansion of the a axes in the hexa-

gonal and trigonal forms are significantly larger. In addition,

the crossing over of the two parabolas for the trigonal form

would suggest different expansion rates for the a and b axes,

and this in turn could result in the doubling of the c axis as the

RH increases, as we have observed.

In contrast, Fig. 3(d) shows a small and distinctly linear

increase in the unit-cell parameters of the monoclinic C2 cell.

The rate of increase of the axial parameters is lower than the

values observed for the higher symmetry forms and the angle

� has the lowest rate of increase. This behaviour suggests a

very slow response to the RH change that is concurrent in all

of the distance parameters, allowing the angular parameter to

remain almost unchanged.

Fig. 3(a) illustrates the results of using these changes in the

unit-cell parameters to estimate the changes in the corre-

sponding volumes and in the number of water molecules per

residue in the asymmetric unit of the different crystal cells as a

function of the RH. These results provided additional support

for the hypothesis that the trigonal form shows a distinctive

behaviour at high RH values, responding more strongly to the

changes and ‘absorbing’ more water molecules per residue as

its crystal unit cell expands. The structural framework that

supports these observations and this hypothesis is discussed in

the following.

3.3. Molecular structural comparisons

The structure of the PurE octamer has been described

previously in the initial report of the E. coli enzyme (Mathews

et al., 1999) and subsequently in the initial report of the

B. anthracis structure (Boyle et al., 2005). The three structures

reported here are fully consistent with the previous results.

In the high-symmetry forms (trigonal and hexagonal), the 422

symmetrical oligomer is constructed by a crystallographic

dyad running diagonally (NE–SW direction; Fig. 1c) through

the vertices in a direction perpendicular to the higher

symmetry axes (31 or 65). The octamer is generated in a similar
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Figure 3
Crystallographic unit-cell changes upon changes in the RH. (a) Number of solvation water molecules per residue. Graph of the number of solvation
waters as a function of the RH in the three different crystal forms of PurE. The calculations were performed using the unit-cell parameters for each RH
as described in x2.2.6. The monoclinic and hexagonal forms were fitted by a regression line. The trigonal form was fitted by a parabola. (b) Variation of
the unit-cell parameters for the hexagonal crystal form upon changes in the RH. The variations in the a and c axes were fitted by parabolas. (c) Variation
of the unit-cell parameters for the trigonal crystal form upon changes in the RH. (d) Variation of the unit-cell parameters for the monoclinic crystal form
upon changes in the RH. All of these experiments were performed using the HC1b device at the ESRF on beamlines BM14 (hexagonal) and ID14-1,
using one crystal of each form for each experiment involving sequential variation of the RH.



way in the structure of Mycobacterium tuberculosis PurE

(PDB entry 3lp6), although the crystal symmetry and packing

are different (Table 1). The most extensive contacts (covering

approximately 1800 Å2) take place among PurE subunits

along the diagonal direction and at the centre of the contact

area, including a duplication of the �2–�1–�3–�4–�5 �-sheet

by the perpendicular twofold (Fig. 1, top right quadrant). The

contact area extends from the edge of the octamer to the

hydrophobic contact between Phe135 (subunits A–B) that

adopts a slightly different conformation in the twofold-
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Figure 4
Crystal packing for P6522. Comparative views of the hexagonal form. (a) Packing view of the ab plane. The colours correspond to the different chains,
with the same code as used in Fig. 1(c). (b) View of the unit cell perpendicular to the 65 screw axis with the contact residues that are within a distance of
5 Å from the c axis, suggesting a ‘pivot’ point. The colours red and black correspond to the two halves of the PurE octamer formed by the dyad
perpendicular to the high-symmetry axes. (c) Closer view of the 65 screw-axis contacts (subunits C–C0) and (d) B–B0 60� away. In both cases residues
within H1 mediate most of the contacts in two different orientations: parallel (c) and cross-helical (d). This part of the structure protrudes from the ideal
flat appearance of the PurE octamer (Fig. 1c). (e) Critical crystal contact of the ordered C-terminus of subunit D with residues of H1 and H2 of subunit B
of the particle above. Dashed lines correspond to hydrogen bonds.



symmetrical contact (D–D0), which is crystallographic in the

trigonal and hexagonal forms. Surprisingly, the central contact

is made by the shortest of the �-strands (�5; Thr113-Val114-

Ala115). The high-symmetry axis does not coincide with the

particle axis, being displaced by a significant distance. In the

hexagonal form, the particle fourfold is 20 Å away from the 65

axis and in the trigonal form the separation is 12.4 Å. This lack

of coincidence prevents the arrangement of the particles along

the high-symmetry axis from being enclosed in a column-like

space as is observed in the tetragonal structure of M. tuber-

culosis PurE (PDB entry 3lp6). The last helix of the mono-

meric particle (H6) extends along the edge of the square in an

arm-like fashion and makes numerous contacts with H2 and

strand �2 of the neighbouring external subunit, thus contri-

buting extensively to the contacts in the NS and EW directions

that configure the edge of the PurE particle.

An analysis of the main-chain temperature factors (B

factors) of the refined structures of the three forms reveals an

intriguing subdomain structure within the PurE subunit that

it is appropriate to discuss in the dynamical description of the

structure. The initial depiction of the tertiary fold of PurE was

performed in terms of a central domain containing five parallel

�-strands (�2–�1–�3–�4–�5) flanked by helices on either side,

as indicated above (Mathews et al., 1999). However, from the

dynamic standpoint a different picture emerges. Fig. 1(d)

suggests the existence of two flexible subdomains within each

subunit, one at the N-terminus comprising �1–H1–�2–H2

(residues Met1–Leu58) and a smaller one at the C-terminus

containing only H6 (Phe135–Val161). These two smaller

subdomains extend from the flat disc-like core of the octamer

(�3–H3–�4–H4–�5–H5) and provide contacts with the mole-

cules above and below in the crystallographic assembly.

In PurE from B. anthracis, the sequence (Glu151-Lys152-

X-X-Arg155-Glu156) at the carboxy end of H6 plays a very

important role in stabilizing the helical conformation. We have

observed supplementary ionic interactions between Glu151

and Arg155 and between Lys152 and Glu156 along the helical

axis in all of the different chains that strengthen the helical

configuration (one further turn). Beyond Glu156 the chain

adopts different conformations and is often disordered. Also,

significant variations among the different subunits can be

observed at the N-terminus of the different structures, which

in some cases are rather significant owing to ordering of the

His-tag extension, as observed in the C2 form of B. anthracis

PurE (PDB entry 1xmp), and where it plays a significant role

in crystal contacts (Figs. 1b and 1c).

3.4. Crystal-packing comparisons

Given its biological importance in the survival of human

pathogens such as M. tuberculosis, B. anthracis and others (see

Table 1), the three-dimensional crystal structure of PurE has

been the object of intensive study. Three-dimensional struc-

tures of PurE from organisms ranging from E. coli (PDB entry

1qcz) to M. tuberculosis (PDB entry 3lp6) have been depos-

ited in the PDB. There is a crystal structure of B. anthracis

PurE at 1.8 Å resolution (PDB entry 1xmp) that is directly

related to this work but was obtained using a different His-tag

sequence at the N-terminus. Although this form also belonged

to space group C2, the unit-cell parameters are not directly

related to the C2 form that we present here and should be

considered to be different. The earlier structure contains one

full octamer in the asymmetric unit, while our C2 crystal form

has a larger unit cell and contains the equivalent of a full

octamer and an additional tetramer in the asymmetric unit.

This large discrepancy is probably a consequence of the fact

that the affinity His-tag sequence extension introduced at the

N-terminus differs in the two crystal forms (Figs. 1b and 1c).

Since the most stable aggregate appears to be an octamer,

based on the previously reported structures, the different

crystallographic forms differ in the arrangement of the octa-

mers in the crystal lattices. Several structures pack the 422

particle into tetragonal lattices [PDB entries 1u11 (Settembre

et al., 2004), 1qcz, 1o4v (Schwarzenbacher et al., 2004) and

3lp6], while the remaining structures use low symmetry to

crystallize the entire octamer or even two full octamers in the

asymmetric unit (PDB entry 3trh; J. Cheung, M. Franklin,

M. Rudolph, M. Cassidy, E. Gary, F. Burshteyn & J. Love,

unpublished work).

The crystal structures discussed here are unique in that they

basically pack the 422 particle in a hexagonal crystal packing.

Moreover, our lowest symmetry form (C2) retains essentially

the same packing in the ab plane and all of the dimensions of

the three crystallographic cells are naturally related (Abad-

Zapatero et al., 2011). Here, we present a molecular-packing

analysis based on the atomic crystal contacts and attempt to

relate them to the corresponding crystal contacts responsible

for the three different crystal forms. References are made to

other crystal structures only when necessary.

3.4.1. The hexagonal P6522 form. The packing in the ab

plane can be described as a hexagonal close packing of the 422

octameric aggregate. Thus, each octamer is surrounded by six

neighbouring octamers in the ab plane, but only two of them

are close enough to interact. There are two intermolecular

contacts between subunits D and C that relate the N-terminus

of subunit D or C of the tetramer in the asymmetric unit to the

N-terminus of subunit D0 or C0 of the symmetric octamer along

the a axis and correspond to vertex–vertex contacts (Fig. 4a).

Along the 65 screw axis, the quadrangular particles stack

around a centre located between residues Thr113 and Ala115

of subunit C in the central part, which is the most rigid core

of the protomer (Fig. 1d). This ‘pivot’ point is approximately

20 Å from the origin of the octamer along the diagonal

direction (Figs. 1b, 1c and 4b). The contacts in the vicinity

(<5 Å) and along the high-symmetry axis are shown in

Fig. 4(b), and all of the contacts are summarized in Table 3.

The c axis is localized between the five-stranded parallel

�-sheet of subunit C and the antiparallel five-stranded �-sheet

of subunit C0 of the same oligomer. The residues involved in

this intra-octamer contact are Val111, Thr113 and Ala115 of

�5 together with the same residues from the other subunit.

There is a hydrogen bond between the carbonyl O atom of

Thr113 and the amine N atom of Thr113 from subunit C0

mediated by two water molecules (W13 and W15). There is
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another contact between the carbonyl O atom of Val103 from

subunit C and the amine N atom of Ala115 from subunit C0.

The contacts along the two high-symmetry axes (65 and 31)

are mediated by the two mobile subdomains (Met1–Leu58 and

Phe135–Val161) that protrude from the basic disc-like shape

of the octamer. These contacts can be described as parallel

helical (involving H1 and H5), cross-helical (H1 and H5) and

the contacts provided by the ordered C-terminus (H6 and its

extension) (Figs. 4c, 4d and 4e).

The intermolecular interactions along the 65 screw axis are

established by helices H1 (Glu16, Tyr20 and Asp23) and H5

(Lys118) of subunit C of the reference octamer and the same

residues of the octamer below (subunit C0). The O atom (O")

of Glu16 forms hydrogen bonds to the hydroxyl O atom of

Tyr20 and the N atom (N�) of Lys118. The contacts are

repeated by a crystallographic dyad perpendicular to the 65

axis. There are two water molecules (W225 and W291) that

mediate the contact between the octamers. On one side, water

W291 mediates between the hydroxyl O atom of Tyr20 and the

N atom (N") of Trp15. On the other side, water W225 forms a

bridge between the O atoms (O") of the two Glu16 residues

(Fig. 4c).

The other contact along the c axis is approximately 12.2 Å

from the origin of the octamer along the diagonal direction;

this coincides with the position of the 31 axis in the trigonal

form and we refer to it as the cross-helical contact formed

by residues in helices H1 (Glu16, Lys19 and Tyr20) and H5

(Lys118). The O atom (O") of Glu16 in subunit B in the

reference octamer forms a hydrogen bond to N� of Lys19 in

subunit B0 of the subunit below. There are four hydrogen

bonds mediated by water W408. Three of them are within the

same subunit (Lys19, Tyr20 and Lys118) and the partner is the

O atom (O") of Glu16 in subunit B 0 (below; Fig. 4d). The side-

chain conformations of the individual residues in these two

contacts are not the same.

The carboxyl O atom of the C-terminal residue Val161 in

subunit D of the reference octamer forms a hydrogen bond

(2.91 Å) to the NH1 atom of Arg41 in subunit B of the

octamer above. It should be noted that residue Arg41 is part

of the active site of PurE. The same carboxyl group also forms

a hydrogen bond to the O atom (O�) of Thr12 and the O atom

(O�) of Ser11 in subunit B of the top octamer (Fig. 4e).

3.4.2. The trigonal P3121 form. The packing in the ab plane

is similar to that in the hexagonal form, except for the fact that
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Table 3
Summary of packing interactions observed in the three different crystal forms (P3121, P6522 and C2).

Packing interactions were determined using the PISA software (Krissinel & Henrick, 2007). Different interactions and interfaces were visualized using PyMOL
(Schrödinger LLC) or Coot (Emsley & Cowtan, 2004). Polar interactions are highlighted in bold; all other interactions are hydrogen bonds. ref, reference molecule;
abv, molecule above; blw, molecule below.

(a) P3121.

Intermolecular, threefold screw,
cross-helical Intermolecular, parallel helical C-terminal Intramolecular

Intramolecular
(antiparallel �-sheet)

Glu16C0(blw)� � �Lys19C(ref) Glu16A0(ref)� � �Tyr20A(blw) Val161B(ref)� � �Arg41C0(blw) Gln89C� � �Lys91A0 Val111C
Glu16C0(blw)� � �W407� � �Tyr20C(ref) Glu16A0(ref)� � �Lys118A(blw) Val161B(ref)� � �Thr12C0(blw) Gln104C� � �Ile116C0 Thr113C� � �Thr113C0

Glu16C0(blw)� � �W407� � �Lys118C(ref) Tyr20A0(ref)� � �Glu16A(blw) Arg41C(ref)� � �Val161B0(blw) Ile116C� � �Gln104C0 Ala115C
Lys19C0(blw)� � �Glu16C(ref) Lys118A0(ref)� � �Glu16A(blw) Lys91A� � �Gln89C0

Tyr20C0(blw)� � �W407� � �Glu16C(ref) Asp23A0(ref)� � �W255� � �Lys19A(blw)
Asp23A0(ref)� � �W279� � �Lys19A(blw)

(b) P6522.

Intermolecular, cross-helical H1
Intermolecular, sixfold screw,
parallel helical H1 C-terminal Intramolecular

Intramolecular,
sixfold screw

Glu16B0(blw)� � �Lys19B(ref) Glu16C0(blw)� � �Tyr20C(ref) Val161D(ref)� � �Arg41B(abv) Gln89B� � �Lys91C Val111C
Lys19B0(blw)� � �Glu16B(ref) Glu16C0(blw)� � �Lys118C(ref) Arg41B0(ref)� � �Val161D(abv) Leu99 Thr113C� � �Thr113C0

Tyr20B0(blw)� � �W408� � �Glu16B(ref) Tyr20C0(blw)� � �Glu16C(ref) Val161D(ref)� � �Ser11B(abv) Leu100 Ala115C� � �Val103C0

Glu16B0(blw)� � �W408� � �Lys118B(ref) Lys118C0(blw)� � �Gln16C(ref) Val161D(ref)� � �Thr12B(abv) Val103 Trp13
Glu16C0(blw)� � �W225� � �Glu16C(ref) Gln104B� � �Ile116A Trp15
Trp15C0(blw)� � �W291� � �Tyr20C(ref) Val114

Ala115

(c) C2.

Intramolecular

Intermolecular C-terminal Parallel Cross C-terminal

Lys19H(ref)� � �Glu16H(abv) Val161C(ref)� � �Ser11I(abv) Lys19L� � �Lys19D Lys19I� � �Glu16A Val161G� � �Arg41A
Val161C(ref)� � �Thr12I(abv) Glu16L� � �Glu16D Val161G� � �Thr12A
Val161C(ref)� � �Arg41I(abv) Val161G� � �Ser11A
Val161E(ref)� � �Ser11H(blw)
Val161E(ref)� � �Thr12H(blw)
Val161E(ref)� � �Arg41H(blw)



the crystallographic twofold is now along the b axis and results

in a different handedness in the arrangement of the octamers

along the axis (Fig. 5a).

Along the 31 screw axis, the quadrangular particles stack

around a centre located between subunits A and C (Fig. 5b)

that is approximately 12.2 Å from the origin of the octamer

along the diagonal direction. In this space group, the octa-

meric particles pivot around the position of the 31 screw axis

in the neighbourhood of residues Gln89, Gln104 and Ile116 in

the C chain and Lys91 in the A chain and make contacts with

the corresponding residues across the perpendicular dyad

forming the octamer (Fig. 5b). A summary of the contacts is

presented in Table 3.

The intermolecular interactions along the 31 screw axis are

established by cross-helical contact of H1 (Glu16, Lys19 and

Tyr20) and H5 (Lys118) from subunit C of the reference

octamer with the same residues in subunit C0 of the octamer

below. The carboxyl O atom (O") of Glu16 forms a hydrogen

bond to the amine N atom (N�) of Lys19. Water W407

mediates the other hydrogen bonds. The O atom (O") of

Glu16 in subunit C (reference) interacts through water 407

with the hydroxyl O atom of Tyr20 in subunit C0 (below). The

N atom (N�) of Lys118 of subunit C (reference) interacts

through water 407 (symmetric) with the O atom (O") of

Glu16 of subunit C0 (below). There is only one water molecule

W407 (and a related symmetry molecule) that mediates
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Figure 5
Crystal packing for P3121. Comparative views of the trigonal form. (a) Packing view of the ab plane. (b) View of the unit cell perpendicular to the 31

screw axis with the contact residues that are within a maximum distance of 5 Å from the c axis, showing the same protruding area making the contacts
along the trigonal axis. The red and black colours correspond to the two halves of the PurE octamer formed by the dyad perpendicular to the high-
symmetry axis. (c) Closer view of the 31 screw-axis contacts (subunits A–A0) and (d) C–C0 60� away. As before, helix H1 mediates most of the contacts but
the specific residue–residue contacts are different, including the side-chain conformations. (e) Critical crystal contact of the ordered C-terminus of
subunit B with residues of H1 and H2 of subunit C of the particle above. Dashed lines correspond to hydrogen bonds.



interactions between residues from two octamers

(Fig. 5c).

We have observed other kinds of interactions established

by parallel helical contacts formed by H1 (Glu16, Tyr20 and

Asp23) and H5 (Lys118) interactions between subunit A of

the octamer below and subunit A0 of the reference octamer.

The O atom (O") of Glu16 forms a hydrogen bond to the

hydroxyl O atom of Tyr20 and the N atom (N�) of Lys118. Two

water molecules, W255 and W279, act as linkers between the

carboxyl O atom of Asp23 and the N atom (N�) of Lys19

(Fig. 5d).

The C-terminus is ordered in the two internal chains A and

B. The carboxyl O atom of the C-terminal residue Val161 in

subunit B of the reference octamer forms a hydrogen bond

(2.91 Å) to the amine N atom of Arg41 in subunit C0 (octamer

below). The same carboxyl O atom forms hydrogen bonds to

the amino N atom and the O� atom of Thr12 in subunit C0

(octamer below). These two interactions are part of an inter-

octamer contact (Fig. 5e). In contrast, the C-terminus of

subunit A interacts with the indole N atom of Trp15 as part of

an intra-octamer contact.

3.4.3. The monoclinic C2 form. The relationship between

the C2 unit cell and the corresponding hexagonal and trigonal

unit cells (Otte & Crocker, 1965) is shown in Fig. 6(b). In the

ab plane the contacts between different layers of the crystal

are mediated by three intermolecular contacts along the

vertices of the octamer (F and E, A and B), including residues

in the N-terminus, with the symmetry-related subunits (I0 and

J0, A0 and B0) (Fig. 6a, Table 3).

Similar contacts to those described above for other space

groups can be observed in the bc or ac planes. These include

parallel, cross-helical and C-terminal contacts. The only

difference is that in this space group (C2) the contacts are

within the two molecules in the asymmetric unit and the

symmetry observed is noncrystallographic. The intramolecular

contacts between the octamer and tetramer in the asymmetric

unit are summarized in Table 3.

In this crystal form, there are three fully ordered C-termini:

two in the full octamer (chains E and G) and a third in subunit

C of the tetramer. The carboxyl O atom of the C-terminal

residue Val161 in subunit E of the reference octamer forms a

salt bridge to the N atom NH1 of Arg41 in subunit H0 (below).

The same carboxyl forms a hydrogen bond to the amino N

atom and the O atom (O�) of Thr12 in subunit H0 (Fig. 6e).

Only the ordered C-terminus of subunit G of the full octamer

in the asymmetric unit makes contact with the neighbouring

half-octamer in the asymmetric unit (intra-octamer

contact).
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Figure 6
Crystal packing for C2. Comparative views of the monoclinic form. (a) Packing views of the ab, ac and bc planes. Although somewhat distorted in the
monoclinic cell, the contacts are very similar to those described above. (b) The geometrical relationship between the different unit-cell parameters:
hexagonal, trigonal and the distorted C222 cell that results in monoclinic C2 upon distortion of the interaxial angle �. (c) A closer view of the ordered
C-terminal intramolecular interaction between subunits A and G of the two different octamers in the unit cell: Arg41 of subunit A interacts with the
C-terminal Val161 of chain G in the adjacent octamer below in the asymmetric unit. Chain labelling is as indicated in the text (x4).



3.5. The solvent structure

3.5.1. Acetate sites. The vast majority of the crystal forms

obtained for PurE grew under high-salt conditions (�0.2 M

ammonium dihydrogen phosphate and �2 M ammonium

sulfate; Table 1). Among them, small organic monovalent

anions such as sodium formate (0.8 M for PDB entry 1xmp

and 1.8 M for PDB entry 3lp6) and sodium acetate are

common. In particular, our three crystal forms were grown

using sodium acetate at concentrations of 0.3 M (P6522),

0.75 M (P3121) and 0.3–0.4 M (C2). Thus, it is not surprising

that acetate molecules are found at certain positions.

The most consistent and repeated acetate site in the struc-

ture of PurE is found within the active site near Ser38 and

its binding pocket, as illustrated in Fig. 7. The position and

orientation of this acetate ion coincide with those of the

formate ion found bound near Ser38 of chain G in the struc-

ture of B. anthracis PurE (revised data

set for PDB entry 1xmp courtesy of the

authors) and with the sulfate ion in

Thermotoga maritima PurE (PDB entry

1o4v). It is also coincident with one of

the formate molecules found at the

active site (near Ser43) in the tetragonal

form of M. tuberculosis PurE (PDB

entry 3lp6). However, this anionic site

does not correspond to the nitrate

moiety of the N5-CAIR product as

suggested by the three-dimensional

structure of the complex of E. coli PurE

with N5-CAIR (PDB entry 2ate;

Hoskins et al., 2007) or to the carboxyl

of CAIR (PDB entry 2nsj; Hoskins et

al., 2007).

In the hexagonal form (P6522), the

crystallization conditions for the crystal contained 0.3 M

sodium acetate and 15% PEG 4000. Four acetate molecules

could be assigned with confidence from the refined electron-

density maps. Consistently, they are located in the active site

of the PurE enzyme within the Ser38–Thr42 loop and in

particular near Ser38 and Arg41 (Fig. 7). One of the acetate O

atoms forms a hydrogen bond to the O atom (O�) of Ser38 and

the other one interacts with the N atom (N") of Arg41. In

addition, there is a well defined acetate near the centre of the

octamer that makes contact with Asn94 of chains A and D in

the asymmetric unit and the corresponding chains (B0 and C0)

by crystal symmetry (Table 4).

The crystals of the trigonal (P3121) form grow in 0.75 M

sodium acetate. Two acetate molecules were unambiguously

found in difference density maps. The binding mode of the two

acetate molecules in the active sites of subunits C and D is

similar to that described above in the hexagonal form. There

are no well defined acetates in the C2 crystal form (Table 4).

3.5.2. Bulk solvent. A critical question in understanding the

different behaviour of the two high-symmetry forms in rela-

tion to the changes in RH is the role that the bulk solvent

could play in the transition. Based on the unit-cell parameters

at each RH, we analysed the bulk-solvent content of the

different crystal forms upon changes in the RH and the results

have briefly been discussed previously (x3.2, Fig. 3). The

number of water molecules per residue ranges from eight to

ten in all of the crystal forms. For the hexagonal and mono-

clinic forms this remains essentially constant. In contrast, the

trigonal form shows a distinct upward trend beginning at

approximately 90% humidity. Interestingly, the transition

between the trigonal and hexagonal lattices takes place

between 90 and 95% humidity (Fig. 2c). It is worth noticing

that the line corresponding to the changes in the hexagonal

lattice crosses the curve describing the changes in the trigonal

lattice at approximately 95% humidity. As hypothesized

earlier, this might suggest that the lattice transition is also

related to changes in the bulk solvent.

3.5.3. Ordered solvent. In the refined hexagonal PurE

structure there are 0.55 water molecules per ordered residue
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Figure 7
Active-site formate and acetate. View of the binding mode of the acetate
molecule bound at the active site of chain A in the hexagonal form
superposed on the revised coordinate set of PDB entry 1xmp (courtesy of
the authors). The 2Fo � Fc density map was contoured at the 1� level.
This revised set included a formate near Ser43G (E. coli PurE). The
acetate molecule corresponds to the formate found in subunit G of the
monoclinic C2 form of B. anthracis PurE published previously (Boyle et
al., 2005). A formate molecule was also found at a similar position in the
active site of M. tuberculosis PurE (PDB entry 3lp6).

Table 4
Acetate molecules found in the different crystal forms of PurE.

Intramolecular acetate molecules are numbered ACT1E–ACT4E in the hexagonal form; ACT9E is
intermolecular and is located at a crystal contact. Only two acetate molecules were found in the trigonal
form and none were found in the C2 form. The amino acids involved in the different interactions are
represented by their single-letter codes. The subscripts (H) and (I) indicate hydrogen bonds and interface
residues, respectively.

M9–W15 V36–Y45 G66–G73 V88 S92–N94 P106 K118 R147 V154 S158

P6522
ACT1E A(H) A(H) A(I) C(I)

ACT2E B(I) B(H) B(I) D(I)

ACT3E C(I) C(H) C(I) A(I)

ACT4E D(I) D(H) D(I) B(I) A(I)

ACT9E B(H)(SX)†
P3121

ACT6E C(I) C(H) C(I) A(I)

ACT9E D(I) D(H) D(I) B(I)

† Crystallographic symmetry x � y, �y, �z (P6522).



in the asymmetric unit, in contrast to the trigonal structure, in

which there are 0.78 water molecules per ordered residue. In

the monoclinic form refined at 2.5 Å resolution there are 0.26

water molecules per ordered residue, as shown in Table 5.

The discrepancy between the number of water molecules per

residue in the hexagonal and trigonal forms is larger than

expected based on the resolutions of the two structures.

We compared the locations of the ordered waters in the two

structures determined at high resolution. The P6522 crystal

structure has 352 water molecules and the P3121 form has 497.

Upon superposition, water positions within less than 1.5 Å

were considered to be conserved. The number of shared

waters is around 277 and these could be considered to be

structural waters. The number of waters unique to each crystal

form were 72 for the hexagonal form and 214 for the trigonal

form. We proposed that the large number of waters in the

trigonal form (three times the number) is greater than would

be expected based on the resolutions of the structures. It is

of note that these waters are predominantly located in the

intermolecular contacts of the crystal (Fig. 8) and along the

high-symmetry axis contacts.

The systematic comparison of the effect of the changes in

the RH of the crystal on the hydration of the corresponding

protein for the three different crystal forms presented earlier

(x3.2, Fig. 3) provided insight into the different responses of

the three different crystal forms to the humidity of the

environment, which could have an effect on the amount of

ordered solvent. The responses of the hexagonal and mono-

clinic forms are rather similar and are represented by an

essentially horizontal line. In contrast, the trigonal form

showed a more pronounced response to changes in the RH,

particularly above 90% RH. It should be noted that it is

precisely near this RH value that the trigonal form undergoes

a lattice transition from the trigonal form to a hexagonal form

(probably P622; Figs. 2c and 3a).

An additional factor affecting the susceptibility of the P3121

lattice to changes in the RH of the environment could be the

association of the water in higher order aggregates. In parti-

cular, by applying a suitable pattern-search routine to mole-

cular configurations of crystalline water, it is possible to

analyse how it is organized in polygons (Stillinger, 1980). We

have analyzed the distribution of water polygons (see x2.2.6)

and the results suggest that this is an additional factor that

could contribute to the different response of the three crys-

talline forms upon changes in the RH of the environment.

In their initial analysis of 1500 structures, Lee & Kim (2009)

observed that the most common water polygons in protein

structures were triangles (43%) followed by quadrilaterals

(12%) and pentagons (24%). This aggregation pattern is

similar to that observed in the more elastic P6522 form of

PurE, in which 71% of the clusters are triangles and the
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Table 5
Statistics of polygon counts for the different crystal forms.

Results of the distribution of water polygons as provided by the Water
Polygon Finder program (Lee & Kim, 2009).

P6522 P3121 C2

No. of waters in asymmetric unit 352 497 483
Layer 1 312 407 453
Layer 2 40 90 30

No. of polygons in unit cell 84 157 20
3 vertices 60 (71.4%) 36 (23.0%)
4 vertices 24 (28.6%) 15 (9.5%) 4 (20%)
5 vertices 76 (48.4%) 16 (80%)
6 vertices 18 (11.5%)
7 vertices 12 (7.6%)

No. of ordered protein residues 632 637 1890
Waters per residue 0.55 0.78 0.26

Figure 8
Comparison of the number and distribution of waters along the c-axis
contacts in the hexagonal and trigonal forms of PurE. The figures show
the hydration shells of two stacked octamers along the high-symmetry
axes running upwards in the images. Subunits in the asymmetric unit are
coloured from A to D and repeated by the crystallographic dyad. In (a)
(trigonal) the upper octamer is related to the lower one by a 120� rotation
and is shifted by c/3. In (b) (hexagonal) the upper octamer is related to
the lower one by 60� and is shifted by c/6. Red spheres represent shared
water molecules and blue spheres correspond to those that are unique to
the space group.



remaining clusters are exclusively quadrilaterals (29%). The

other two structures presented in this work, the P3121 and C2

forms, have a distribution of clusters dominated by pentagons,

as shown in Fig. 9. A possible explanation of the different

clustering of water molecules in the crystals is the composition

of the crystallization medium. The P6522 crystals were

obtained in the presence of PEG and salt, whereas the P3121

and C2 crystals grew in the presence of sodium acetate and

cacodylate (Table 1).

4. Summary of results

The systematic variation of the RH in three different crystal

forms of PurE revealed a distinctly different behaviour in two

different high-symmetry forms: P6522 and P3121. The crystals

of the P6522 form responded elastically to changes in the RH

of the crystal environment in that they retained the crystallo-

graphic parameters (unit-cell parameters and space group)

over a wide range of RH values (95–70%) and were able to

sustain these properties during cyclic RH changes (Fig. 2a). In

addition, the crystals retained the quality and extent of the

diffraction pattern upon returning to the optimal RH (�85%).

In contrast, a similar geometrical arrangement of PurE octa-

mers in a P3121 crystallographic lattice responded to similar

changes in RH in an inelastic manner. The diffraction pattern

of the trigonal form deteriorated irreversibly when subjected

to similar RH changes (95–70%) and their quality of diffrac-

tion did not recover to the optimal value. In addition, under

certain conditions the P3121 lattice underwent a lattice tran-

sition to a hexagonal lattice with a doubled c-axis length that

could be the P6522 form. The C2 lattice also discussed is

geometrically related to the other two by a distortion of the

hexagonal lattice, which can also be indexed as an ortho-

rhombic C222 cell, upon an expansion of the � angle from 90�

to 98.3� (Fig. 6d). Overall, the C2 form was considered to be

less amenable to systematic study of the effects of RH changes

owing to the lower resolution diffraction and the large number

of subunits in the asymmetric unit (12, equivalent to a full

octamer and a tetramer).

In an attempt to find the factors that could contribute to

the dramatically different responses to changes in the RH, a

detailed analysis of the refined structures of the three different

crystal forms was performed at the optimal RH and at cryo-

genic temperatures, including determination of (i) the three-

dimensional structures of PurE at the tertiary and quaternary

levels, (ii) the packing in the three different crystal forms and

(iii) the solvent structure for both ordered and bulk solvent.

The static structure of the corresponding 422 octamers does

not differ in any dramatic way from the octamers described in

the quaternary structure of PurE from other species, including

the previously determined structure of PurE from B. anthracis.

However, analysis of the temperature factors (B factors;

Fig. 1d) of the amino acids in the different subunits (A–D for

the hexagonal and trigonal forms and A–D and E–L for the C2

form) and the distribution of large r.m.s.d. deviations among

the different subunits gives credence to the suggestion that the

structure of PurE is better described in terms of two flexible

domains on either side of a more rigid core (Fig. 10). The

flexible domain at the N-terminus comprises residues Lys2–

Leu58 (�1–H1–�2–H2) and is followed by a more rigid central

core containing residues Lys59–Ser134 (�3–H3–�4–H4–�5–

H5). The smaller final flexible subdomain mainly consists of

H6 and the final extension (Gly157-Ser158-Glu159-Leu160-

Val161), which adopts different conformations in the various

subunits.

The packing of the disc-like PurE octamer in the ab plane

in the three crystal forms can approximately be described as

hexagonal close packing of a square particle, with minor

variations in the contacts along the high-symmetry axes in the

hexagonal and trigonal cells. These contacts are always

provided (although in slightly different side-chain conforma-

tions) by the flexible subdomains introduced above that turn

out to be the most salient features of the PurE octameric discs.

These protruding features provide three types of contacts

referred to as parallel helical (involving H1), cross-helical

(also involving H1 but in a different orientation) and

C-terminal (involving the ordered helix H6). Small variations

in the interfaces of these three contact areas in the trigonal

and hexagonal lattices, including the conformation of the

external side chains of H1 (Glu16, Tyr20 and Asp23) and H5

(Lys118) and the contacts with a few (1–3) water molecules,

result in the differences between the P3121 and P6522 packing,

including their different handedness.

Another structural element that is important in establishing

the handedness of the packing arrangement in the two

different space groups is the extent of ordering of the

C-terminal flexible subdomain in the different crystal forms,

particularly in the external subunits that make the contacts

between the reference molecule and those above and below it.

In the P3121 packing, the internal subunits B and C are fully

ordered and the external subunits are only ordered to Ser158

(subunit C) and Gly157 (subunit D). In contrast, in the P6522

tetramer subunits B and D are fully ordered and subunits A

and C are only ordered to Gly157. In the more complex
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Figure 9
Histogram of polygon distribution. Histogram of the percentages of
different types of polygons (3–7 fused) found in the three different
crystals forms of PurE. The statistics were obtained using the program
Water Polygon Finder (Lee & Kim, 2009) as described in x2.2.6.



packing arrangement in the C2 crystal, the first tetramer

(subunits A–D) only has a fully ordered subunit C; in the other

full octamer in the asymmetric unit only subunits E and G are

fully ordered. The other subunits are only ordered to the end

of helix H6 (Gly157 or Glu156). Incidentally, when the

C-terminus is ordered the carboxy-terminus interacts with

Arg41 in the corresponding subunit, affecting the conforma-

tion of this active-site residue and hindering the entrance

of possible ligands or inhibitors. This could explain our failed

attempts to soak ligands into the trigonal and hexagonal forms

despite the ‘dilation’ of the two crystal lattices using changes

in the RH of the crystal (Abad-Zapatero et al., 2011).

The refined structures also provide important information

regarding the solvation of the PurE octamers and the amount

of solvent (both bulk and ordered) involved in the crystal

contacts. For the purpose of the discussion of the different

diffraction properties, we focused on the trigonal and hexa-

gonal forms.

Our detailed analysis of the solvent distribution in the

trigonal and hexagonal packings revealed an important

difference that cannot be related to the different resolutions

of the two refined structures (1.76 versus 2.0 Å). The detailed

comparison of the solvent structures, presented previously,

revealed that there were many more unique waters that were

involved in intermolecular contacts along the 31 screw axis in

the P3121 form compared with the hexagonal form (80 versus

26; Figs. 8a and 8b).

5. Discussion and conclusions

The summary of the results outlined above suggests a possible

explanation for the different behaviour of the two main

lattices (hexagonal versus trigonal) upon changes in the RH of

the crystal environment and could lead to the identification of

possible causes of and factors participating in this effect.

We surmise that in the P6522 form the intermolecular

(crystal) contacts are better defined (more rigid) owing to the

smaller amount of water in the interface (Fig. 8b). The hexa-

gonal lattice only expands by a certain amount owing to the

limited number of water molecules, and when it is expanded

by the additional hydration and contracted by the changes in

RH the subunit contacts return to the same well defined state.

Owing to the small number of water molecules in the inter-

face, the disc-like aggregates can ‘readily’ find the previously

existing contacts without any ambiguity and thus the lattice is

restored to one of very few possibilities, guided by the parallel,

cross-helical and C-terminal contacts (Fig. 4). All of these

factors could have been facilitated by the presence of PEG in

the crystallization medium, as has been suggested in other

studies (Russi et al., 2011). The resilience of the hexagonal

lattice to the changes in RH could be indicated by the rela-

tively robust response to the increase in the number of waters

per amino-acid residue (Fig. 3a).

In the P3121 form, a detailed analysis of the unit-cell

expansion, the solvent structure and the distribution of the

solvent in terms of higher polygon aggregates points to a

different behaviour of the crystal upon changes in the RH.

The majority (80 versus 26) of the unique waters observed in

this crystal packing are located in the inter-octamer space

relating the reference molecule to those above and below it

(Fig. 8a). The pattern of ordering of the C-terminal residues

within the various subunits is different (Fig. 5) and it is

conceivable that the C-terminus of subunit B could be disor-

dered upon changes in the RH of the crystal and that the three

residues of the C-terminus of subunit D could become ordered

to make it more like the P6522 form. However, the transition

from the c-axis dimension observed in the P3121 form

(�132 Å) to one more like that in the hexagonal P622 form

would not require a strict replication of the interactions. Minor

alterations in the number of water molecules, the redistribu-

tion of some water molecules and/or the rearrangement of the

C-terminal residues would suffice to induce the �270 Å axis.

A full experimental strategy to prove or disprove the

suggestions proposed above and to unambiguously identify

the most likely factors and the order of occurrence in a
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Figure 10
Tertiary-structure variations among different PurE crystal forms. Root-
mean-square deviations (r.m.s.d.s) between C� atoms for different
subunits of PurE. (a) R.m.s.d. versus residue number between subunit
A of the trigonal form and the corresponding subunits of the tetramer
(A–D) in the asymmetric unit of the hexagonal form. (b) R.m.s.d. versus
residue number between subunit A of the trigonal form and the
corresponding subunits (A–D) of the half-octamer in the asymmetric unit
of the C2 form. Note the clustered high r.m.s.d. values in the N-terminal
flexible subdomain (residues Lys2–Leu58) and at the C-terminal end.
Local large differences in the more rigid structural core occur at the
�-turn (Lys91–Gly95) near the centre of the particle (fourfold axis) and
prior to the C-terminal mobile subdomain at Phe135. A similar profile of
large r.m.s.d. deviations occurs when comparing the structures of the
different subunits in the C2 form.



sequential cascade will require the data collection, structure

determination and full refinement of structures of PurE

crystals collected at the critical RH points identified above. Of

particular interest, although it might prove to be particularly

challenging, would be the collection of complete data sets at

high resolution at the transition point between the trigonal

and hexagonal lattices observed in the experiments described

above.
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